
CO

!

z

<

<
z

TECHNICAL

D-1684

NASA TN D-1684
• i

c_P+ -/

NOTE

THE LOW FREQUENCYPOWERSPECTRUM

OF COSMIC-RAYVARIATIONSDURING IGY

David Stern

Goddard Space Flight Center

NATIONAL AERONAUTICS AND SPACE

WASHINGTON

ADMINISTRATION

March 1963



L/

\

=

f

,,,,"



THE LOW FREQUENCYPOWERSPECTRUMOF
COSMIC-RAYVARIATIONSDURINGIGY

by

David Stern

Goddard Space Flight Center

SUMMARY

The power spectra of cosmic-ray variations, as recorded by

neutron monitors at various locations, is computed and analyzed

herein. The frequency range of the variations covered (from 1/200 to

1/2 per day) is found to contain only one significant peak, contributed

by the well known 27-day variation. By use of the power spectrum, a

quantitative estimate of the latitude dependence of the 27-day variation

may be made. From this, the average rigidity dependence of the mod-

ulation amplitude is deduced, and is found to be essentially the same as

that of Forbush decreases. The average was taken over the period

July 1957 to December 1958, during which the peak decreased

significantly.

Irregular variations were also investigated, as was the correlation

with magnetic activity. It is found that the irregular variations have

approximately the same latitude dependence as the 27-day peak, de-

creasing roughly exponentially with increasing frequency. There was

some correlation between magnetic activity and cosmic-ray variations,

but it showed no clear recurrence tendencies.

A general review of power spectral analysis, with emphasis on

points relevant to this work, is included here, and the conclusions

along with the connection between Forbush decreases and the 27-day

variation are discussed.
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THE LOW FREQUENCYPOWER SPECTRUM OF

COSMIC-RAY VARIATIONS DURING IGY*

by

David Stern

Goddard Space Flight Center

INTRODUCTION

Examination of the record of a high counting rate cosmic-ray neutron monitor immediately re-

veals its large variability. At least four definite sources of variation can be traced: the ll-year

cycle; the Forbush decreases accompanying sudden commencement (SC) magnetic storms; the 27-day

variation; and the daily variation. Of these, three are periodic in character: (1) the ll-year varia-

tion, which is connected with the cycle of solar activity and will not be discussed further; (2) the 27-

day variation, which is believed to be associated with the period of solar rotation; and (3) the daily

variation, which reflects anisotropy in the cosmic radiation reaching the earth. Both the 27-day and

the daily variation are often observed to undergo large changes in amplitude within a few cycles. In

addition, the 27-day variation seems to vary in both phase and frequency (References 1, 2 and 3). If

the sources of the 27-day periodicity are located upon the sun, such changes are indeed expected

since all features of the solar surface have a transient nature. Thus, a source of 27-day variation

may in time be superseded by another, at a different latitude (which affects the rotation period), and

at a different longitude (which affects the phase). Changes of this kind, unfortunately, complicate the

study of the phenomenon.

Apart from these well-defined variations, the counting rate undergoes various irregular fluctua-

tions. Comparison between stations confirms the fact that these are genuine fluctuations, and not of

instrumental origin. Some of the questions associated with these fluctuations are:

(1) What is their typical time scale?

(2) What is their energy dependence?

(3) Do there exist in the primary flux any periodic variations other than those listed?

To answer these and similar questions, and to analyze phase-unstable periodic variations quanti-

tatively, the method of power spectrum analysis is very useful. This method will now be briefly

reviewed.

*Published in substantially the same form in ]. 6eophys. Res. 67:2133-2144, June 1962.

YThis work was performed under a National Academy of Sciences postdoctoral scholarship.



REVIEW OF POWER-SPECTRALANALYSIS

Conventional Fourier analysis is not suitable for the analysis of a time-dependent counting rate

x(t). which tends to be periodic with frequency f0, but randomly changes its phase, now and again.

Indeed, it can be shown that as the length of the given record tends to infinity, the corresponding es-

timated Fourier transform of x(t)for any frequency approaches zero. This is true even for f 0; over

the long run, x(t)will have equal probability for being in or out of phase. Two main approaches exist

for frequency analysis in this case.

One approach is based on the fact that even though the Fourier transform of x(t)approaches

zero in the limit, its mean square, under very general assumptions, tends to a finite limit P(f) :

11¢- iP(f) = lim_ x(t)e 2writ dt
T--_ ,_-v/2

The function P(f)is called the power spectral density, and will be strongly peaked at f = f0 • It dif-

fers only in minor details from the "Periodogram" introduced by A. Schuster (Reference 4; also see,

for instance, Reference 5, Section 16.30). It can be intuitively understood as follows: let x(t) be re-

garded as a voltage signal, and let it be passed through a filter network sharply tuned to pass only a

narrow band Af around the frequency f. Let the output signal be fed into a resistance of one ohm.

The mean power of the output signal, which is proportional to the mean square of the output voltage,

will then be P(f)Af (hence the name power spectrum). Power spectral analysis of a time-varying

quantity is, therefore, similar to analysis of an unknown voltage signal for its frequency content by

means of frequency filters (Reference 6).

An alternative approach is the investigation of recurrence tendencies. An early method attrib-

uted to Chree (Reference 7) consists of selecting, according to a predetermined criterion, times at

which x(t) was highest (or lowest), and then superimposing the record upon itself so that all selected

points overlap. If there is a tendency for a maximum (or minimum) of x(t) to recur after a period

% this will generally show up in the sum of the superimposed records. This method has clearly

demonstrated, among other things, the 27-day periodicity in cosmic-ray variations (see, for exam-

ple, References 2, 3, 8, 9, 10, and 11). Unfortunately, it is not suitable for quantitative evaluations.

A more satisfactory measure for recurrence is the autocorrelation or autocovariance function,

defined as:

1 fT/2C(r) = lim _ [x(t) - x] [x(t-_-) - x]dt
T--,oo _'-T/2

If we first normalize x(t) so that _ = 0, then C(¢) simplifies to

c(_) : x(t) x(t-_)



Assumingthattheprocessis symmetricaboutits mean,×(t) hasequalprobability to beof either
sign. Thesameholdsfor x(t -T), providedit is totally unrelatedto x(t); in this caseC(_)will, over

a long run, approach zero. On the other hand, if _ represents a recurrence period, whatever the sign

of x(t), then x(t -_-) will have more than even probability of being of the same sign, so that C(_)

tends to a positive limit.

Wiener and Khintchine (Reference 12, footnote 16) showed that the two measures described here

contain equivalent information, and each can be derived from the other by means of a Fourier

transformation:

0o

C(_') = f P(f)e2_ri f_- df
d_C0

GO

P(f) = f_co C(T)e-27ri fr dT.

The ordinary method of estimating the power spectrum, though not the only one (see, for instance,

Reference 13), therefore involves prior estimation of the autocorrelation function by means of the

finite record on hand, from which an estimate of P(f) is obtained by transformation. Though both

functions contain equivalent information, it is useful to consider both for complete understanding of

the behavior of x(t). If there is a recurrence tendency with period z0 lasting more than one cycle,

C(T) will have peaks not only at To but also at 2r o , 3%, etc.; it will, therefore, indicate the average

number of oscillations between phase jumps. On the other hand, e(f) has the advantage of concen-

trating all the information about the component with frequency f at one point. This is especially im-

portant when there is more than one frequency involved, in which case, C(_-) is often rather irregular.

More details can be found in a number of books and reviews dealing with the subject (Refer-

ences 12, 14, 15, 16, 17, 18, 19 and 20). Of these, the one by Blackman and Tukey (Reference 18) is

most useful in dealing with the practical problems connected with actual estimation of the power

spectrum; the present computation, using SHARE program 574 adapted for the 7090 computer, essen-

tially follows their method. Some relevant points, quoted here without details, are the following:

Frequency Resolution: If the data are sampled at intervals At,C(T) can only be estimated for

integral multiples of At. Furthermore, if _',.x = mat so that C(_) is estimated for m + 1 values of _-,

the resulting estimates of P(f) will cover m + 1 points, equally spaced in frequency, from zero to

f_,x = _At. Each estimate of P(f) will represent an average of the power spectrum over a band of

the order f in -- ½ mAt around the frequency it represents; the exact width and shape of the band depend on

the relative weights given to the estimates of C(r). "Hanning windows" were used in this case. In

the present computation, daffy averages of the cosmic-ray intensity were used and usually 100 esti-

mates were taken, covering the spectrum for periods between 2 and 200 days.

Aliasing: If the power spectrum does not vanish above f, higher frequencies will contribute

to the estimated spectrum in a way which cannot be resolved (aliasing). The spectrum of cosmic-ray

variations has been found to fail off with increasing frequency rapidly enough as to make this source
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of error negligible. Evenif this werenotso, thefact thatdatapointsrepresentdaily averages, and

not momentary samples taken at daily intervals, strongly suppresses contributions from higher

frequencies.

The Accuracy of Estimatio_z: The method here described assumes that the process is stationary

in time- i.e., insensitive to a shift of the time axis, and this assumption may be only an approxima-

tion. Indeed, the power spectral density of cosmic-ray variations changes over the period investi-

gated, and therefore, any estimate of it gives only a time-averaged result (Reference 21). Secondly,

the question arises as to how closely the spectral estimates drawn from a limited sample approxi-

mate the actual values. Blaekman and Tukey show that the ratio between a sample obtained by m es-

timates from n data points, and the actual value, approximately follows a x 2 distribution with _ - 2n/rn

degrees of freedom. For analyses covering the IGY period (July 1957 to December 1958), n = 549,

giving , = ll. Finally, it should be remembered that because of the statistical fluctuations in the

counting rate, our record is not only limited in length, but also has not been sampled with ideal ac-

curacy. It can be shown, however, (Appendix A) that at least in the present case, this source of er-

ror is totally negligible.

Power spectrum analysis has been used in the investigation of diverse processes, such as the

free oscillations of the earth, recurrence of magnetic storms, frequency analysis of sea waves, tur-

bulence, and many others. Only in a few cases, however, has it been used to anaiyze cosmic-ray
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Figure 1--The low frequency power spectrum of cosmlc-ray variations during IGY as recorded by the
C Hmax neutron monitor.



variations. Fonger (Reference 22) used the autocorrelation to demonstrate a 27-day recurrence, but

since his data covered only a three month period, they are not very significant statistically. Panof-

sky, Lethbridge and Neuberger (Reference 23) obtained power spectra of neutron monitor rates, and

cross correlated them with various meteorological data. In the present work, an attempt has been

made to deduce detailed properties of low frequency variations of the cosmic-ray intensity (as mea-

sured by neutron monitors during IGY), and especially of the 27-day variation.

THE POWER SPECTRUM AT LOW FREQUENCIES

As Figure 1 shows, the power-spectral density exhibits a marked peak between 27 and 28 days.

The location of the peak is not fixed (see Figure 2), and over the period July 1957 -- December 1959

its variation does not exhibit any marked trend (cf. Reference 2, Table III). None of the other peaks

in the spectrum is believed to be significant; in particular, the absence of a conspicuous second har-

monic is noted. Throughout the period anal-

yzed, the amplitude of the 27-day peak rapidly [

decreases with time, as can be seen in Figure 2. 20FThe results described here are averages com-

puted over the IGY period; during the first half /

year of the IGY, the amplitudes were about twice 15

this average magnitude.

The autocorrelation has been plotted at daily _10_ ] I

intervals for200 days (see Figure 3), and itis _ ] _ / /evident that the recurrence tendency is rela- "-

tively stable, m 5F/ \/ _ ,JULY 1957-27 DEC 1957

_0

The counting rate was also cross-correlated

with the magnetic activity C indices, tabulated

in the reports of Solar-Geophysical databy the

National Bureau of Standards. A sharp negative

peak is observed in the cross-correlation

function:

cc(T ) : x(t) Y(t-7) ,

where x( t ) is the counting rate and Y(t)iS the

magnetic activity index. It is located near t = 1

day (see Figure 4), indicating that high geomag-

netic activity is likely to be followed within one

day (on the average) by low cosmic-ray rates.

This agrees with known properties of SC mag-

netic storms; a 27-day recurrence tendency was

a / 33.3 25 20

,_5

F-

13..

_0

1959

0 I I I
0.05 0.1 0.15 0.2 0.25

FREQUENCY (days -z)

Figure 2-The power spectrum of cosmic-ray variations
as recorded by the Zugspitze neutron monitor for differ-
ent parts of IGY and for 1959
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not conspicuous in this case. There

seems to be, on the whole, quite a

difference between the 27-day recur-

rence tendencies of cosmic radiation

and that of magnetic activity (Ref-

erences 23 and 24). While the spec-

trum of cosmic-ray variations shows

a single well defined peak, that of

magnetic activity not only has a sec-

ond harmonic often exceeding the

fundamental, but also shows higher

harmonics, up to the sixth (Figure 5).

THE RIDIGITY DEPENDENCE OF

THE 27-DAY VARIATION

Regarding the counting rate as

a voltage signal, we can define the

"power" contained in it, between the

frequencies f, and f2 as the area

contained by the power- spectral den-

sity graph between the two frequen-

cies:

f2
Power _- P(f)df.

fl

0.25

20 lO
I I

PERIOD(days)
8 5 4
I I I

-I

.Q

v

Z
L_
E3

ew
I--

0-
_0

et_

0.20

0.15

0.10

0.05

I
0.05 o.1

I I 1

0.15 0.2 0.25 0,3

FREQUENCY (days - 1)

Figure 5--The power spectrum of magnetic activity indices during IGY:

The power contained in the 27-day variation will be proportional to the area enclosed by the

27-day peak. It should be noted however, that this quantity will not be obtained by passing the data

through a filter which selects a limited band around 27 days. In that case, the power would also con-

tain a major contribution from the "pedestal" upon which the peak is superimposed, which presum-

ably is due to irregular variations. We now define as the equivalent amplitude h of the variation the

amplitude of a pure sinusoidal variation; containing the same power as is contained in the peak: the

method by which A is calculated is described in Appendix B. The values of h thus obtained are be-

tween 0.5 and 2 percent.

The equivalent amplitudes have still to be corrected for altitude. Since the latitude dependence

of the variation strongly resembles that of Forbush decreases, we adopt the correction proposed for



210

z
O

_T

>-
].5

O

"-; 1.0

I,-
Z
W

>

:3
O.' 0.5

Q

O

Q 0

5 10

CUTOFF RIGIDITY (Bey/c)

Figure 6--Latitude dependence oF 27-day amplitude,
averaged over IGY.

Table 1

Average Amplitudes of the 27-Day Variation for a
Number of IGY Neutron Monitors.

Amplitude Corrected Cutoff
Amplitude Rigidity

Station (%) (%) (Bey/c)

Mawson
Sulphur Mtn.
Uppsala

Mt. Wellington
Climax
Zugspitze

Rome
Hermanus
Alma Ata

Mt. Norikura
Huancayo
Lae

1.59
2.05
1.58

1.62
1.84
1.71

1.20
1.21
0.94

0.88
0.73
0.53

1.59
1.66
1.58

1.50
1.305
1.26

1.20
1.21
0.85

0.66
0.52
0.53

0.2
1.1
1.3

2.0
3.0
3.3

4.7
7.0
7.3

10.3
13.2
13.5

the latter case by McCracken and Johns (Refer-

ence 25), amounting to 12 percent per 1000 me-

ters. This is further justified by the fact that

corrected amplitudes of some high altitude sta-

tions (e.g., Sulphur Mountain; Huancayo) fall

close to those of sea level stations (e.g., Upp-

sala; Lae), having approximately the same cut-

off. In all, 12 amplitudes were found and plotted

against cutoff rigidities obtained from the ec-

centric dipole model by Kodama, Kondo, and

Wada (Reference 26); they are given in Table 1

and in Figure 6.

Itwill be seen that most of the points fall

on a smooth curve, with the exception of Her-

manus. This station is likely to have its cutoff

lowered by local anomalies in the geomagnetic

field,and was therefore not considered. Itwill

also be noted that there seems to be no flatten-

ing of the curve down to a cutoff rigidityof

about I Bev/c-- this implies that the primary

radiation in the low energy region undergoes

very large variations.

From the latitudedependence of the count-

ing rate, itis possible to deduce the modulation

experienced by various portions of the primary

spectrum. Let

N(p) = The sea level counting rate at cut-

off rigidity p,

5N(p) = The 27-day equivalent amplitude,

S(p) = The primary differential proton

spectrum,

_S(p) = The amplitude of the 27-day varia-

tion undergone by the primary

spectrum at rigidity p, and

Y(p) = The "gross" yield function at rigidity p (Reference 27, Equation 11).

The experimental data consist of the equivalent amplitudes A(p) : 5N 'N, and the latitudedependence

N(p) • Neglecting penumbral effects,we can write

8



_o (1)N(p) -- S(p') Y(p') clp' ,

P

co

8N(p) -- j_ 8S(p')Y(p')dp' -- N(p) A(p)
P

Differentiating these expressions, and dividing Equation 2 by Equation 1, we have

(2)

8S d
A(p)]S -dN LP_(p)

We now need two experimentally determined functions of the cutoff rigidity-- the equivalent am-

plitude A(p), and the total counting rate N(p). Unfortunately, not many sea level measurements of the

latitude dependence of N(p) exist for IGY. We shall, therefore, base our calculations on the quiet-

time rates N0(P) used by Quenby and Webber (Reference 27); they are arbitrarily normalized to

N0(15 Bev)= 100.

Let us denote the ratio between the differential primary spectra during IGY and during the solar

minimum (1954-5) by

s__Ce!
a(p) = S0(P ) ;

values of a(p) are taken from the work of

F. McDonald (Reference 28). The total counting

rate N(p) changes relatively little over the

solar cycle; therefore, no correction is ap-

plied to it. On the other hand, dN/dp is propor-

tional to S/p), and receives a correction factor _.

Substituting in Equation 3, we obtain

dA
8S dp
S - A(p) + No(P)

dN o
_<P) d---_

The results are presented in Table 2 and in

Figure 7.

The rigidity d e p e n d e n c e obtained here

may be compared to other experimental re=

suits. It can be seen from Figure 7 that be-

tween 12.5 and 3.5 Bey/c, it roughly follows a

p-1 relation; this agrees with results found for

Forbush events (Reference 29). The dependence
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Figure 7--Rigidity dependence of the 27-day modulation
undergone by the primary spectrum, averaged over IGY.
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Table2

TheRigidityDependenceofthe27-DayVariations.

P No a 102A(P) dp
(Bev/c) dp

2.5
3.5
4.5

5.5
6.5
7.5

8.5
9.5

10.5

11.5
12.5

172.5 3.2 0.58 1.38
168.0 5.8 0.68 1.26
161.3 7.6 0.76 1.15

153.4 8.2 0.81 1.045
145.2 8.1 0.84 0.935
137.5 7.5 0.855 0.843

130.3 6.7 0.87 0.770
124.0 6.0 0.875 0.705
118.4 5.2 0.88 0.648

113.5 4.6 0.89 0.603
i09.I 4.1 0.895 0.555

0.135
0.110
0.115

0.105
O.lO0
0.080

0.070
0.060
0.055

0.045
0.040

_S/S
uncorrected

8.79
4.44
3.57

3.00
2.73
2.32

2.13
1.93
1.90

1.72
1.61

_S/S
corrected

14.0
5.93
4.38

3.48
3.08
2.56

2.34
2.12
1.98

1.85
1.74

does not seem to be a power-law one, however, and it steepens at low rigidities. The rigidity depend-

ence should also be compared with the large 27-day amplitudes found by other workers, especially by

the Russians (References 30-33) at moderate balloon altitudes and high latitudes. Since balloon-borne

instruments are relatively more sensitive to low rigidities, their results are in general agreement

with the results obtained here. We cannot very well extrapolate the rigidity dependence to low ener-

gies; it seems, however, quite possible that the low energy cutoff of primary cosmic radiation under-

goes a 27-day modulation at solar maximum, and that this may be a cause for experimental

discrepancies.

IRREGULAR VARIATIONS

The 27-day peak is superimposed upon a continuum, r_presenting the contribution of irregular

variations to the power spectrum. This continuum (plotted against frequency) is roughly exponential

in shape, reaching a relatively constant noise level (see Appendix B) at a frequency of about 5/day.

The latitude dependence of the continuum seems to be approximately the same, at first glance, as

that of the 27-day peak. This in itself is not surprising, since it is bound to contain a major contribu-

tion from Forbush events, which have practically the same latitude dependence. The comparison is

complicated, however, by the fact that the continuum also contains contributions from instrumental

drifts, which are not latitude dependent; this will tend to make the latitude dependence less steep than

that of the 27-day variation. Because of this effect, one should discount stations in which the contin-

uum is abnormally high.

Table 3 gives the ratio (in arbitrary units) of the power-spectral density to the area of the 27-day

peak for various frequencies. If the continuum has the same latitude dependence as the 27-day

10



Table 3

Latitude Dependence of Irregular Variations in Cosmic Ray Intensity During IGY.

Station

Mawson

Sulfur Mtn.

Uppsala

Mt. Wellington

Climax

Zugspitze

Rome

Hermanus

Alma Ata

Norikura

Huancayo

Lae

Power Spectral Density

Area of 27-day Peak
(arbitrary units)

Freq. =
.O05/day

1095

930

734

958

919

753

989

.010/day .015/day .020/day .055/day

358

477

409

440

467

351

425

272

305

341

327

358

314

281

277

219

292

282

316

247

232

106

81

91

107

93

107

109

.060/day

71

47

70

65

66

73

75

5635

9042

1495

1808

2777

1357

1886

513

422

1309

422

1108

363

340

679

333

810

334

362

696

215

316

177

158

198

133

181

98

66

214

.065/day

48

37

55

48

53

49

52

51

89

70

53

175

variation, this ratio at any given frequency should be constant for all stations. It can readily be seen

that for three stations (Lae, Hermanus and Alma Ata) the ratios are unusually large; it is possible

that these stations experience considerable drifts. For the other stations, there may be _ome in-

crease towards the equator, but generally, the ratio seems to be fairly constant. It is, therefore,

reasonable to assume that the latitude dependence of the continuum at low frequencies is close to that

of the 27-day peak.

CONCLUSION

Several theories exist about the cause of the 27-day variation. One approach has been investi-

gated in detail by Alfvbn (References 34 and 35). Alfvbn assumes that the interplanetary magnetic

field near the solar equatorial plane contains "beams" of high plasma flux and magnetic field density,

which co-rotate with the sun. These beams last for several rotations, and every time they intercept

the earth, magnetic and cosmic-ray disturbances occur.

Alternative approaches are discussed by Dorman, who examined and rejected various explana-

tions based on (1) a solar magnetic dipole noncoincident with the solar rotation axis, (2) atmospheric

effects, and (3) high energy particles produced by solar flares. In Reference 37, Section 32, Para-

graph 9(d), he suggests that "the effect of the decrease in cosmic-ray intensity during the time of

geomagnetic disturbances, is the basis of the phenomenon of 27-day variations of the cosmic rays."

The Forbush decreases, to which Dorman refers, are obviously nonperiodic phenomena, as they can

11



generallybe tracedbackto solar flares occurringa dayor twopreviously. However,flares tendto
beassociatedwith centersof solar activity, andtheseare notevenlydistributedin solar longitude.
As is shownby the27-dayvariationof sunspotnumbers,therewill generallybeonecentermuch
moreactive thantherest. Everytime this centerfacestheearth, there is a markedtendencyfor
suddencommencement-typemagneticstormsandtheir associatedForbushdecreasesto occur, lead-
ingto anapparent27-dayperiodicity.

Theresults obtainedheresupportthis hypothesis.Theenergydependenceof thevariationap-
proximatesthat obtainedfor the Forbusheffect (References29and37). Thevariation in period
length(seeFigure 2)canbeexplainedby notingthatthe "favorableinterval" for anactiveareato
causea Forbushdecreaseis quitewide(Reference38);thecosmic-rayrecord for thebeginningof
IGY(Figure8), whenthe27-dayvariationwasvery high,showsthat theseparationof the mainFor-
busheventswasindeedof the order of 27days.

1957

1957

JULY AUGUSTSEPTEMBER

OCTOBERNOVEMBERDECEMBER

1958 JANUARY FEBRUARY MARCH

Figure 8--Cosmic-ray intensities during the first half of
IGY as recorded by the Climax neutron monitor.

Examining this point more closely, we find

that the main Forbush events alone cannot ac-

count for the 27-day variation. For one thing, the

second harmonic of the variation would have been

higher in that case. We also note that the cosmic-

ray intensity (Figure 8) often starts decreasing

before the main Forbush event. These "prede-

creases" (Reference 39) may be tentatively iden-

tified as Forbush decreases, the main impact of

which misses the earth; they cause considerable

smoothing of the 27 -day variation, especially at

high altitudes (Reference 30, Figure 1).

When we take into account the rigidity de-

pendence of the 27-day variation obtained here,

its correlation with magnetic activity, and its time dependence, it appears very likely that this varia-

tion is associated with nonrecurrent magnetic storms, showing spurious periodicity because of their

origin in solar activity centers. Perhaps recurrent magnetic storms may be responsible for a 27-

day variation different from the one discussed here, with presumably a smaller amplitude (possibly

conforming with Alf_en's model). This can only be established by analyzing periods of low solar

activity when Forbush events are rare and magnetic activity shows strong recurrence tendencies

(Reference 40).
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AppendixA

Estimation of the Fluctuation Noise

In practice, the cosmic-ray neutron rate x(t) is estimated at fixed intervals At. Since the num-

ber of counts in any interval is subject to statistical fluctuation, this estimation is subject to error.

We now wish to find the extent to which this will affect the estimation of power-spectral density P(f).

Instead of dealing with an imperfectly sampled signal x(t), it is found convenient to analyze a sig-

nal x' (t) = x(t) + n(t) which is sampled without error--where n(t) is the noise, duplicating the ef-

fects of statistical fluctuations. Since the measurements consist of averaging the counting rate over

time intervals £t, we choose n(t) to be a "histogram" function (see Figure B1), each column of which

has the width At. We assume that the heights of the columns are normally distributed aroundthe mean;

actually, they obey a Poissonian distribution, but it is only at very high sampling rates, when the av-

erage number of counts per interval is small, that the distinction is significant. Henceforth, we shall

assume that both x(t) and n(t) have been normalized to average zero.

The noise is correlated with itself only for points within the same column; hence, its autocorre-

lation function is:

[--x

=_ (1 -Cn(t)

The noise-power spectrum is then

t/At) for t < At.

for t > At.

Pn(f) : ; e -2_ift Cn(t ) dt,
-m

At

= 2n 2 cos 2_Tft 1 - --- dt,

= n2 _t [dif (fAt)] 2

where

sinrrx
dif x :

7TX

is the well-known diffraction function.

X(t)

N(t)
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Since the signal and noise are uncorrelated, the autocorrelation of x'(t) will be the sum of those

of the signal and of the noise, and the power spectrum will retain this additive property. The noise

spectrum p(f) is thus superimposed upon the desired spectrum. This in itself would cause no trouble

if we had an infinite run of data at hand, since the true spectrum can then be obtained by subtracting

the calculated value of e(f). In a finite run, however, P(f) undergoes unpredictable fluctuations, as

derived from a X2 distribution (Reference 18), and it is this variability which constitutes the noisiness

introduced by statistical fluctuations.

For the low frequency end of the spectrum, we may approximate dif (fAt) _ 1 . Let us assume

that the cosmic-ray rate shows no variation apart from statistical fluctuations. Then, defining w, No,

and N, as in Appendix A, we have

and

n2 : (W - _)2

-(N0)N12-- 1_ (n2)'

For purely statistical fluctuations, however,

hence,

N12 = No,

The noise level will then be

Pn(f) _ 106&t
N o

The result is evidently inversely proportional to the counting rate. In actual practice, it seems to be

somewhat larger than the above estimate indicates, probably because of nonstatistical fluctuations.

For daily averages of a typical neutron monitor station, such as Rome, N O = 7.5 × 105. If time is

measured in days, the noise level turns out to be of the order of unity. This is completely negligible

in comparison to the amplitude of the 27-day peak, which on the same scale is close to 4500.
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AppendixB

Power Spectra of Logarithmically Reduced Data

The IGY data used in most of the present computation (Reference 41) do not give the counting rate

N, but instead give

w(t) = 1000 log(_.) -- lO0O log N + constant ,

where N* is a conveniently chosen constant. If we regard the counting rate as the sum of a constant

rate N O and a small fluctuation NI, averaging zero, we get (by expanding)

N 1

W = 1000 _oo + constant

__ (N0 2
N12 : \I000/ (W-W) 2 ,

: \1000/ C(0)

= \1000] P(f) df ,

= 2\1_] P(f) df ,

where Cl t I and P(f) are the autocorrelation and the spectral density obtained by analyzing w( t 1. The

power contained in any finite frequency band of N(t) is proportional to the integral of P over the band,

with the same proportionality factor as above.

Assume a frequency peak of area Q; if it were entirely due to a harmonic variation of frequency

f and amplitude a, its power would equal a2/2. Even if the peak is not infinitely sharp, we can define

an equivalent amplitude a containing the same power; then

In the text, relative equivalent amplitudes A = a/N 0 are usually given.
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